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The Climate Transition Risk Exposure of Holding Companies and 
its Implication on Financial Market Pricing 

 

Abstract. There is growing awareness of the macroeconomic and financial implications of 
climate change. In this regard, the 2015 Paris Agreement highlighted the responsibility of the 
financial sector to massively increase investments into sustainable low carbon firms while 
simultaneously divest from high carbon activities in order to facilitate the decarbonization of 
the economy and avoid stranded assets as well as shocks to financial stability (UNFCCC, 2016). 
This thesis contributes to research in Climate Finance by examining the exposure of global 
holding companies to climate transition risk and by analyzing its implication on financial 
markets. Therefore, firms’ 4-digit NACE codes are reclassified into Climate Policy Relevant 
Sectors (CPRS), which take into consideration companies’ greenhouse gas emissions, relevance 
for climate policy and role in the energy value chain (Battiston et al., 2017). The following part 
of the work compares the financial market pricing of firms with more/less risky business in 
terms of climate transition risk/CPRS exposure by means of a Capital Asset Pricing Model, a 
Fama French 3-Factor Model and rolling regressions. Results for the CPRS exposure of global 
holding companies indicate that the overall direct exposure to CPRS is significant but low, as 
only 7.5% of overall revenue is earned in these respective sectors. Results for the pricing of 
several dirty portfolios indicate that the market underestimates the climate transition risk 
exposure of firms albeit showing a clearly reversing trend. Most notably, the systematic risk 
(beta) of several dirty portfolios is priced in line or below the overall market portfolio over the 
whole length of the time series. Interestingly, results from rolling regressions show strongly 
rising beta values for the dirty- as well as the very dirty portfolio, particularly after the Paris 
Agreement. Therefore, one can say that financial markets start to price climate transition risk 
more heavily than before. These findings are relevant as they contribute to a better disclosure 
of climate related risks while also indicating that financial markets tentatively start to be more 
aware of political announcements to phase out fossil fuels. 

 

 

Master Thesis by Philip Fliegel 

Supervisors: Univ. Prof. Dr. Armon Rezai and Prof. Irene Monasterolo  

Msc Socio-Ecological Economics and Policy 

Vienna University of Economics and Business 

Vienna: October 8, 2021 



 

 

Acknowledgments 

 

Throughout the writing of this thesis, I have received a great deal of support and assistance. 

Most notably, I would like to thank my supervisors Prof. Monasterolo and Prof. Rezai for their 
continuous support over the last six months. The regular feedback calls greatly facilitated the 
topic identification, research question formulation and usage of the appropriate methodology. 
Without their insight and knowledge into the highly complex topic I would have not been able 
to finish this project. 

Similar appreciation goes to Prof. Battiston, who co-developed the Climate Policy Relevant 
Sector methodology and took his valuable time to explain the underlying reason and logic 
behind the concept. He also greatly facilitated the implementation of the special methodology 
for holding companies. 

I would also like to acknowledge the great support of Anja Duranovic who taught me how to 
access and retrieve data from databanks such as Eikon, Orbis or Bloomberg as well as her 
support in operationalizing the Climate Policy Relevant Sector methodology in Excel. 

In addition, I am very thankful for the help from Prof. De Angelis who greatly helped me during 
the second half of my work process by discussing how to best operationalize the Capital Asset 
Pricing Model for my thesis. 

Finally, I would also like to thank Momentum Institute, which funded my research through the 
Junior Fellowship program. I am particularly thankful to Oliver Picek who will make sure that 
the results of this thesis find their way to a greater public. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Content 
1. Introduction ......................................................................................................................... 1 

2. Literature Review ................................................................................................................ 3 

2.1 The CPRS Methodology ................................................................................................. 4 

2.2 Pricing Models ................................................................................................................ 5 

2.3 Pricing of Physical Climate Risks ................................................................................... 6 

2.4 Pricing of Climate Transition Risk .................................................................................. 7 

2.5 The Research Questions .................................................................................................. 8 

3. Methods & Data .................................................................................................................. 9 

3.1 Methods & Data for Research Question 1 ...................................................................... 9 

3.2 Methods & Data for Research Question 2 .................................................................... 12 

3.2.1 Construction of Dirty Portfolios ................................................................................ 12 

3.2.2 Estimation of Several Market Models ....................................................................... 14 

3.2.3 The Time Series Data ................................................................................................ 16 

3.2.4 Regression Diagnostics .............................................................................................. 17 

4. Results ............................................................................................................................... 18 

4.1 Climate Transition Risk Exposure of Global Holdings ................................................ 18 

4.2 Pricing of Climate Transition Risk on Stock Markets .................................................. 19 

4.2.1 Baseline Portfolios against Market ............................................................................ 20 

4.2.2 Singular CPRS against Market .................................................................................. 23 

4.2.3 The Fama French 3-Factor Model ............................................................................. 23 

4.2.4 Estimating Rolling Regression Models ..................................................................... 25 

4.2.5 Chow Test for Structural Breaks and Reduced Time Frame Regression .................. 29 

5. Discussion ......................................................................................................................... 30 

5.1 The Climate Transition Risk Exposure of Holding Companies and its Implication on 
Financial Market Pricing .......................................................................................................... 31 

5.2 Limits ............................................................................................................................ 35 

6. Conclusion ........................................................................................................................ 35 

7. References ......................................................................................................................... 37 

 

 

 

 

 

 



 

 

List of Figures 

Figure 1 | Top 10 countries in the dataset. ............................................................................... 10 
Figure 2 | CPRS exposure of global holding companies. ......................................................... 18 
Figure 3 | CPRS 1-6 exposure of global holding companies. .................................................. 19 
Figure 4 | Alpha Coefficient of the 24-month rolling regression for the value weighted dirty 
portfolio. ................................................................................................................................... 26 
Figure 5 | Beta Coefficient of the 24-month rolling regression for the value weighted dirty 
portfolio. ................................................................................................................................... 26 
Figure 6 | Alpha Coefficient of the 24-month rolling regression for the value weighted very 
dirty portfolio. .......................................................................................................................... 28 
Figure 7 | Beta Coefficient of the 24-month rolling regression for the value weighted very 
dirty portfolio. .......................................................................................................................... 28 
 

 

List of Tables 

Table 1 | Summary statistics for parent company revenue in each CPRS. ................................ 9 
Table 2 | Dirty portfolios utilized for the regressions and description of its constituents. ....... 13 
Table 3 | Summary statistics for stock return time series. ........................................................ 17 
Table 4 | CAPM regression results for the dirty portfolio. ....................................................... 20 
Table 5 | CAPM regression results for the very dirty portfolio. ............................................... 22 
Table 6 | CAPM regression results for the Energy Intensive, the Buildings and the 
Transportation portfolio. .......................................................................................................... 23 
Table 7 | Fama-French 3-Factor regression results for the dirty and the very dirty portfolio. . 24 
Table 8 | CAPM regression results for value weighted dirty and very dirty portfolios after the 
Paris Agreement. ...................................................................................................................... 29 
Table 9 | Summary of the main regression results for various dirty portfolios. ....................... 30 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

List of Abbreviations 

Abbreviation Explanation 

CAPM Capital Asset Pricing Model 
CPRS Climate Policy Relevant Sectors 
E Expected Value  
EU European Union 
GHG Greenhous Gas 
HML High Minus Low 
IPCC Intergovernmental Panel on Climate Change 
MC Market Capitalization 
MSCI Morgan Stanley Capital International 
N Number 
NACE Nomenclature Statistique des Activités Économiques dans la 

Communauté Européenne 
Obs Observations 
OLS Ordinary Least Squares 
R Return 
RF  Risk Free Rate of Return (Approximated by the 1 Month US Treasury 

Bill Rate) 
RM  Return of the Market Portfolio 
SMB Small Minus Big 
SP Standard & Poor’s 
Std. Dev. Standard Deviation 
US United States 
V Variance 𝜶 Jensen’s Alpha Coefficient 𝜷 Beta Coefficient  𝜺 Serially Uncorrelated Random Error Term 𝝈𝟐 Squared Standard Deviation 𝝋 Equal Weighting Factor 𝝎 Value Weighting Factor 

 
 

 

 

 

 

 

 

 

 

 



1 

 

1. Introduction 
In order to prevent catastrophic damages, the Paris Agreement of 2015 obliges participating 
states to limit anthropogenic global warming well below two degrees by radically transforming 
economies away from fossil fuel energy consumption (UNFCCC, 2016). According to the most 
recent report from the Intergovernmental Panel on Climate Change (IPCC), there is still time 
to avoid the worst consequences of global warming, however this window of opportunity is 
closing quickly as human societies increase emissions as opposed to radically cut greenhouse 
gas (GHG) emissions. Under a very low GHG emission scenario, IPCC projections indicate 
that global warming above two degrees Celsius would be extremely unlikely if humankind cut 
emission towards net neutrality by around 2050 (IPCC, 2021). Failing to achieve the two-degree 
target would cause catastrophic, but well-known consequences such as sea level rise, increasing 
likelihood of extreme weather events or biodiversity loss (Stern, 2015). Such physical climate 

risk would not only severely threaten millions of people and nature but also significantly impact 
immobile physical assets as well as productivity levels (Burke et al., 2015), thereby severely 
affecting global production and financial stability. The exact scope and timing of such climate 
impacts are impossible to project due to high levels of uncertainty (Monasterolo, 2020) 
connected to biophysical climate tipping points (e.g., Arctic sea-ice loss or weaker Atlantic 
circulation), which might induce further impacts in a catastrophic downward spiral (Lenton et 
al., 2019).  

Additional to physical climate risk, the transition towards a low carbon economy might cause 
climate transition risk. However, both physical and transitionary risks are often intertwined, 
and transition risks might also be caused by rising awareness about physical risks (Battiston et 
al., 2020).  Further drivers of climate transition risk include technological shocks to the costs 
of renewable energy, regulatory shocks to ambitious climate policy or changing expectations 
of market participants. All of these drivers can lead to an abrupt change in expectations about 
the future of high carbon assets, namely that a low carbon transition might occur sooner than 
previously expected (Monasterolo, 2020). In such a scenario, large parts of remaining fossil 
reserves as well as physical carbon infrastructure are at risk of devaluation and write offs 
causing fundamental climate transition risk for fossil fuel related companies (Van der Ploeg & 
Rezai, 2020b). An example of such changing expectation is provided by the newest flagship 
report from the International Energy Agency on the future of energy, which for the first time 
describe a detailed roadmap for the energy sector to reach the net zero emissions by 2050 (IEA, 
2020). Climate transition risk mainly concerns high carbon industries such as the energy sector, 
however, given their central role in most contemporary economies, losses in the energy sector 
can be expected to also influence related industries along the value chain and eventually create 
cascading effects which systematically could affect the whole economy and ultimately threaten 
financial stability (Battiston et al., 2019). Such transitionary climate risks are mainly associated 
with the notion of a disorderly low carbon transition. While a climate transition can be orderly, 
i.e., enacted early on and fully anticipated by market participants; late, uncoordinated and 
unanticipated climate policy bears the risk of a disorderly transition towards a low carbon 
society. In a disorderly transition, investors cannot anticipate the transition, leading to 
potentially long-lasting negative impacts on both the economy as well as the financial sector. 
High carbon firms would also not have the time to adjust the business strategy away from fossil 
fuels, leading to abrupt changes in market share. In a worst-case disorderly transition, high 
carbon companies could not service their debt obligations anymore leading to losses throughout 
the economy (Monasterolo, 2020).  
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Climate risk has increasingly become important for financial institutions and investors (Carney, 
2015). Several initiatives emerged which aim at a better disclosure of climate related risks as 
well as the initiation of regular climate stress tests. In 2017 some central banks joined forces 
and created the network for greening the financial system (NGFS), which explicitly 
recommended financial stability climate stress testing (NGFS, 2019) and also generated several 
climate scenarios to do so (NGFS, 2020). Another initiative emerged based on the Financial 
Stability Board, which installed a Task Force on Climate-related Financial Disclosures that 
aims at better disclosure of climate risk related risks on the company level (FSB, 2020). On the 
European Union (EU) level, the EU Commission created a high-level expert group on 
sustainable finance to set standards for the identification of sustainable investments. Thereby 
the EU seeks to scale up investments in low carbon industries while simultaneously divest from 
carbon intensive activities (European Commission, 2020). Estimates about the scope of the 
required investments vary considerably and are highly sensitive to assumptions about future 
cost of electricity, future electricity demand and emission reduction scenarios. Scholars 
modelled the investment costs required to achieve a low carbon transition in the European 
energy sector and found total numbers ranging from 127 billion Euros to 225 billion Euros 
under different electricity cost development scenarios (Alessi et al., 2019).  

Given the growing awareness about physical and transitional risks associated with climate 
change one would expect traditional economic financial models to prominently feature these 
risks within the respective models. However, there are several reasons why this has not 
happened sufficiently and why traditional risk models, which assume perfect information and 
normal distributions (Black & Scholes, 1973), are ill equipped to grasp climate change induced 
risks, as a new class of risk, to their full extent (Battiston et al., 2021a). Climate risks differ 
from traditional financial risks due to several reasons. Most notably, future scenarios of an 
unprecedented event cannot be based on past experiences. Climate risks are nonlinear in their 
impact and traditional normally distributed risk assessments based on historic data, fall short in 
grasping the scope of the problem. Additionally, the real consequences of climate change are, 
as of today, unknown. Thus, the risks are situated in an environment of deep uncertainty. 

Financial markets are also well known for the short-term focus on profits, while climate risks 
are likely to impact humankind over the next centuries. Finally, endogeneity of climate risk 
perception by actors involved and complexity in understanding the complex adaptive systems 
further complicates grasping climate risks adequately (Ackerman, 2017; Battiston et al., 2019; 
Kriegler et al., 2013; Monasterolo, 2020).  

Companies around the world face climate transition risk to different degrees. How exposed 
companies are to the risk of a disorderly low carbon transition mainly depends on the relative 
sector of operation and utilized technology (Battiston et al., 2020). While the standard 
classification for economic activities, the NACE Rev2 codes, classify economic sectors in the 
European community in a very detailed manner, they lack a detailed differentiation how 
companies are exposed to climate transition risk, given their field of operation and utilized 
technology. Therefore, Battiston et al. (2017) reclassified companies from 4-digit NACE codes 
into nine mutually exclusive climate policy relevant sectors (CPRS). The classification is based 
on three criteria. First, a firm’s direct or indirect GHG emissions. Second, the relevance for 
climate policy, including the sensitivity to regulatory climate policy shifts. An example is the 
carbon leakage regulation of the EU. The last criteria is the role of the economic activity in the 
energy value chain. Thereby the CPRS methodology goes beyond solely focusing on GHG 
emissions and allows to categorize firm’s climate risk exposure to a high degree of granularity. 
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More precisely, the main CPRS encompass Fossil Fuel, Utility, Energy Intensive, Buildings, 
Transportation, Agriculture, Finance, Scientific R&D and Other (Battiston et al., 2020). These 
main sectors can be further refined into granular CPRS by differentiating firms based on their 
energy technology (Bressan et al., 2021).  However, CPRS do not only cover potential losses 
from climate transition, but also provide a classification for business activities, which might be 
affected positively by a climate transition, e.g., renewable energy producers (Battiston et al., 
2020). 

This thesis aims at using the CPRS methodology in order to differentiate global holding 
companies based on their relative exposure to climate transition risk. Since firms are usually 
engaged across different sectors, detailed revenue information is utilized to estimate the shares 
of company’s activities in respective CPRS. This work focuses on global holding companies as 
no detailed CPRS exposure classification was ever conducted for this range of NACE codes. 
Furthermore, these companies usually fall under the radar because their NACE codes as 
financial holdings would classify them into CPRS 7 – Finance. However, holdings operate 
through subsidiaries, which might be engaged in very climate relevant industries such as fossil 
fuel extraction or aviation. Thus, special scrutiny in reclassifying NACE codes into CPRS is 
required. This thesis then aims at using the results of the detailed companies’ CPRS exposure 
databank in order to analyze whether financial markets price climate transition risk of global 
holdings. 

The findings contribute to the debate around Climate Finance in two ways: First, it furthers an 
evidence-based classification of companies into CPRS as opposed to an oversimplified 
dichotomy of “clean” or “dirty” firms. Firms are complex entities, which operate across several 
sectors, across many subsidiaries. Hence, only few firms are 100 % clean or dirty. The CPRS 
classification helps overcoming simplified thinking by understanding firms’ operations in terms 
of their “dirtiness”, i.e., their detailed exposure to climate transition risk across all fields of 
operation. This is particularly true for global holding companies, which pro forma do not carry 
too much climate transition risk but through subsidiaries might be directly climate policy 
relevant. The thesis thus fills the gap in the correct classification of holding companies into a 
wider company database, which builds on Battiston et al. 2017 and Battiston et al. 2020 and 
aims at reclassifying all NACE codes into CPRS. The thesis thereby facilitates better disclosure 
of climate transition risk, which is pivotal for investors who want to understand the detailed 
climate transition risk exposure of their portfolios.  

Second, it helps understand if and to which degree financial markets are pricing firms’ climate 
transition risks into today’s security prices. Thereby financial market participants can better 
understand whether a reduction in high carbon investments might increase the value of investor 
portfolios. The results of this thesis can also help assess the credibility of policy makers 
promising a green energy transition. This is especially interesting for the Paris Agreement as it 
showed the global ambition to limit warming below two degrees Celsius. Furthermore, insights 
from the (mis)pricing of climate transition risk on financial markets can contribute to the debate 
about the efficiency of financial markets, especially in the long term.  

2. Literature Review 
The review of the relevant literature will start with highlighting the relevance of financial 
markets in a low carbon transition by introducing literature on forward looking climate financial 
risk models as well as stranded assets. It continues with literature on the utilization of the CPRS 
methodology and theoretical pricing models. In the next sections results from studies 
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investigating the pricing of both physical and transitional climate risks on financial markets are 
highlighted. Finally, a gap in the literature is identified and two research questions are 
formulated with the aim of addressing this knowledge gap.  

Traditional IPCC scenarios use large scale integrated assessment models, which utilize different 
climate policy scenarios and return socioeconomic output trajectories. However, these models 
fail to consider the pivotal role of financial markets, which itself shape climate mitigation 
pathways. The likelihood of a (dis)orderly transition is thus not exogenous to the financial 
market but depends on the perception and expectations of financial market participants. In other 
words: the financial market is influenced by climate policy and climate scenarios but 
endogenously also shapes the risk of a disorderly transition (Battiston et al., 2021b). In order to 
account for the two-way relation between the financial system and climate mitigation pathways, 
scholars proposed an integrated framework, which models different climate transition pathways 
using a combination of forward-looking integrated assessment models for socioeconomic- and 
GHG emissions scenarios and combined these results with climate financial risk models in 
order to include financial markets into future scenarios. Results show that financial markets 
play a pivotal role in stabilizing the climate transition. Whenever financial markets act as an 
enabler of ambitious climate policies an orderly transition (without stranded assets and price 
volatility) emerges, even when climate policy implementation occurs rather late, i.e., only after 
2030. However, financial markets can also work against ambitious climate transitions, for 
example by neglecting climate risks or by delaying the reallocation of funds away from fossil 
fuels. The financial sector as a barrier can lead to a disorderly transition, even when the timing 
of climate policy is early and starts immediately. Model projections yield significantly higher 
asset volatility and stranded assets within a disorderly transition. As a result, the stability of the 
financial markets could be affected severely (Battiston et al., 2021b). 

Within a disorderly low carbon transition there is considerable risk of asset stranding. There is 
no generally accepted definition on carbon stranded assets, but the term describes generally 
write-offs in high carbon assets. Such abrupt changes in the market value of fossil assets are a 
potential consequence of a disorderly low carbon transition, given two conditions: There is a 
sudden and unanticipated change in the profitability of high carbon assets and these assets must 
be locked into the fossil value chain, i.e., they cannot be made profitable elsewhere. There are 
four different types of asset stranding (Van der Ploeg & Rezai, 2020b). First, McGlade and 
Ekins (2015) estimate how much of the proven fossil fuel reserves will remain unburned if 
humankind is able to limit global warming below two degrees. The results amount to four fifths 
(one third) of global coal (oil) and show the huge scope of stranded carbon as the first type of 
stranded assets. Second, physical capital such as oil platforms or excavators will strand once 
the demand for fossil fuel softens. Third, prices will react sooner than the actual end of the 
carbon era, thus the valuation of assets at risk of stranding might decrease earlier than currently 
expected. Finally, policy announcements are not certain, but if uncertainty about their 
implementation is reduced in the future, carbon assets can suffer an immediate loss in market 
value (Van der Ploeg & Rezai, 2020a, 2020b). 

2.1 The CPRS Methodology 
The methodology of classifying companies into CPRS was first introduced by Battiston et al. 
(2017) and has since been utilized by leading financial institutions such as the Austrian National 
Bank (Battiston et al., 2020), the European Insurance and Occupational Pensions Authority 
(Battiston et al., 2019), the European Central Bank (European Central Bank, 2019) and the 
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European Banking Authority (EBA, 2020) in order to assess the climate transition risk exposure 
of their loans and securities, measured via the CPRS exposure. A good example for the 
classification of climate transition risk exposure of financial instruments to CPRS is provided 
by a financial impact assessment of the EU sustainable taxonomy. Alessi et al. (2019) estimate 
the direct exposure of EU non-financial companies to CPRS in 2018 at 37% for their equity and 
at 33% for their outstanding bonds. The aggregated exposure of the institutional sector in the 
EU equity market ranges from 30% - 45% in 2018. The institutional bond exposure ranges from 
35% - 50%. These large numbers for major European securities indicate the scope of the climate 
transition given that large parts of the economy are exposed to CPRS.  

The results of the CPRS classification were also used to show how shocks to the value of certain 
financial contracts affected the overall portfolios. Scholars analyzed for example the direct and 
indirect exposure of European banks, investment funds and other financial actors to CPRS. This 
classification established the groundwork for a so-called climate stress test, in which 20 EU 
listed banks are confronted with a hypothetical shock. This shock might for example occur due 
to unexpectedly ambitious new climate regulation or due to unanticipated low prices for 
renewable energies. First and second round losses amount from 7% up to 30% of banks’ equity. 
Losses could even be understated as financial actors are embedded in complex financial 
networks, creating new sources of risk for the economy (Battiston et al., 2017). Other work 
analyzed the climate transition risk exposure of the European Central Banks current asset 
purchase program by assigning the bond portfolio into CPRS for each country. In a second step 
and under weak market neutrality it is shown how the European Central Bank could rebalance 
its bond portfolio in order to reduce the climate transition risk, measured by the exposure of the 
bond portfolio to CPRS (Bressan et al., 2021). 

2.2 Pricing Models 
The theoretical literature on pricing of firms on financial markets always circles around the 
famous Efficient Market Hypothesis, which states that “security prices at any time ̀ fully reflect` 
all available information” (Malkiel & Fama, 1970, p. 383). While the hypothesis has been 
criticized on different grounds (Grossman & Stiglitz, 1980; Guerrien & Gun, 2011) it is still the 
benchmark approach to pricing in financial markets and its prediction, i.e., that it is impossible 
for fund managers to consistently beat the market, stands on a solid body of empirical evidence 
(Fama & MacBeth, 1973; Malkiel & Fama, 1970). But if it is impossible to consistently beat 
the market through active investing, what role can fund managers play? The answer is given by 
the widely utilized capital asset pricing model (CAPM), which builds upon the Efficient Market 
Hypothesis (Pham & Phuoc, 2020). Under standard assumptions of market equilibrium such as 
efficient capital markets as well as risk averse rational and profit seeking investors (Black, 
1972), the CAPM states that there is a linear tradeoff between systematic risk (beta), i.e., the 
portion of risk which cannot be eliminated by asset diversification and expected return. The 
CAPM predicts that assets with greater systematic risk than the market portfolio will yield 
greater expected returns and vice versa. However, on a risk adjusted basis, no outperformance 
against the market is possible. The CAPM operationalizes this thought through the estimation 
of an alpha coefficient, which shows potential over/underperformance of a fund against the 
market. In efficient financial markets the excess return of funds compared to the market average 
(alpha) is expected to be zero, i.e., no outperformance is possible on a risk adjusted basis. 
(Black, 1972; Jensen, 1968; Sharpe, 1964, 1966). The role of fund managers thus is not trying 
to outperform the market but to identify the desired risk level of customers in order to establish 
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a portfolio, which matches the risk tolerance of clients; the return is then just a function of the 
portfolios systematic risk (Sharpe, 1966). 

The initial one factor CAPM model explained stock market variation of portfolios solely by the 
market factor and was criticized for not being able to capture all of the relevant risk factors. 
Critiques concluded that the CAPM was therefore not able to explain the cross section of 
average stock market excess returns over the whole time series sufficiently well (Fama & 
French, 1992). A famous reformulation of the CAPM is the 3-factor model developed by Fama 
and French (1993), which adds to the market factor two further risk factors in order to better 
explain the variation in stock market returns. First, they add the High Minus Low (HML) value 
premium factor, which accounts for the spread in returns between value (high book to market 
ratio) and growth (low book to market ratio) stocks. Second, they add the Small Minus Big 
(SMB) size factor, which considers the return differential between companies with small and 
big market capitalizations. Comparing the results to the initial one-factor CAPM model Fama 
and French (1993) found that the estimated model’s intercept/alpha was not statistically 
different from zero for most portfolios anymore. Another interesting tendency observed was 
that the beta estimate trended towards one for the estimated portfolios. Fama and French (1993) 
thus conclude that a 3-factor model is better suited in explaining stock market returns since the 
additional SMB and HML factors can explain why different stocks produce different average 
returns while the market factor explains why stocks produce excess returns in the first place. 

2.3 Pricing of Physical Climate Risks 
Climate risk is a new class of risk, which has received increasing attention among scholars 
(Battiston et al., 2021a). The literature on the pricing of climate risk can be separated into the 
pricing of physical and transitionary climate risks. Generally, research on the (mis)pricing of 
climate risk on financial market is still scarce. This is mainly due to the lack of standardized 
information on the climate risk exposure of companies as well as financial contracts (Battiston 
et al., 2021a). Concerning physical climate risk, Garbarino and Guin (2021) suggest that 
physical climate risk is underappreciated by market participants in the United Kingdom. 
Lenders regarded the risk of flooding as a one-time event, which is conflictive with evidence 
highlighting the danger that increased extreme weather events due to climate change could be 
the new normal. Similar evidence for the catastrophic bond market shows that climate physical 
risk is underestimated significantly in this market segment, despite strong evidence for 
increased risk of Atlantic tornados associated with global warming (Morana & Sbrana, 2019). 

Employing a fixed effects panel model, Beirne et al. (2020) show that a country’s climate 
vulnerability has a significant impact on sovereign bond yields. To some limited degree, a 
nation’s relative resilience to physical climate risk can mitigate the effect on sovereign bond 
yields, highlighting the importance of adaptive investments in countries most affected by 
climate change. Impulse responses from a structural panel vector autoregression also show that 
the effect of shocks on climate risk vulnerability and climate resilience is persistent, reaching a 
peak 15-18 quarters after the shock. This shows that negative consequences from climate 
change are not a transitionary problem but can potentially impede economic growth in the long 
run. 

Kling et al. (2021) focused on the connection between climate vulnerability to physical risks 
and companies’ cost of capital. Using panel data regressions as well as structural equation 
models, they find that increased climate related vulnerability goes hand in hand with higher 
cost of debt, however the authors were only able to show comparable results for firms’ cost of 
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equity to a limited degree. Furthermore, the authors state that climate induced risks are set to 
increase, with companies in developing countries most affected. 

2.4 Pricing of Climate Transition Risk 
Scholars also compared the pricing of companies more or less exposed to climate transition risk 
but found equally inconclusive results. By estimating the effect of relevant announcements on 
carbon intensive or low-carbon stock indices, Monasterolo and De Angelis (2020) find that the 
Paris Agreement significantly reduced the systematic risk (beta) of low carbon indices, while 
indices highly exposed to climate transition risks were perceived as riskier than before. 
However, the overall market reaction for carbon intensive indices was relatively mild, 
compared to the low carbon ones. These results provide a first tentative hint that financial 
markets are starting to incorporate climate transition risks and opportunities more heavily after 
the Paris Agreement. Other related research compared stock performances to German industry 
averages after the Paris Agreement and found similar results in the short run (Pham et al., 2019). 

Mukanjari and Sterner (2018) also focus on the stock market reaction to the Paris Agreement, 
however they extend the analysis with the 2016 election in the United States (US), which made 
Donald Trump the 45th president of the United States of America. Utilizing both impulse 
indicator saturation as well as event study methodologies they find some moderate effects for 
both events. The Paris Agreement led to some moderate negative abnormal returns for fossil 
fuel stocks. The election on the other hand only had a significant impact on renewable energy 
stocks, again the effect is rather small. The authors conclude that the measured effects were 
smaller than the alleged importance of the major events. 

Alessi et al. (2021) focus on the stock market and create a synthetic green indicator for firms, 
which is based on a 50/50 weighted average between an environmental transparency index and 
firms GHG emission intensity. They find that greener firms, as measured by their index, have 
a green risk premium, i.e., investor accept below average returns by green companies since 
more transparent and less GHG intensive companies are a hedge against future climate risk. 

Brammer et al. (2006) find that firms in the United Kingdom exhibiting high scores on corporate 
social performance indicators underperform the market, while firms scoring worst on the scale 
significantly outperform the market. By using cross-sectional regressions on stock returns the 
authors also show that the environmental component in the corporate social indicators is most 
responsible for the underperformance, while the community aspect is least responsible. A 
somwehat different message emerges from an older literature review by Renneboog et al. 
(2007) on socially responsible investment funds, which indicates no statistically significant 
performance divergence between benchmark funds and mutual funds focusing on socially 
responsible investments.  

However, analyzing the EU emission trading market and using Ordinary Least Squares (OLS) 
as well as Panel data regressions, Tian et al. (2016) show that rising costs of emission were 
negatively correlated with stock market returns of carbon intensive energy producers. Stock 
returns of green energy producers on the other hand profited from rising costs of emissions. 
Bassen and Rothe (2009) also focus on the EU emission trading market but employ a CAPM 
approach. They show that carbon is priced as a systematic risk factor since they are able to show 
that high emitting utilities request a higher carbon risk premium, i.e., their carbon beta estimate 
is significantly higher than the carbon risk premium for low emitting stocks. 
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Similar mixed results have been found for the bond market. Scholars were able to show a 
positive effect of green bonds on yields for non-financial institutions as well as supranational 
institutions. This implies that firms offering green bonds benefit from a lower cost of debt. 
However, the same finding could not be reproduced for financial institutions, which account 
for the lion’s share of green bond offerings. Additional results indicate the establishment of 
reputation over time since repeated issuers of green bonds have additional yield benefits 
compared to one-time green borrowers. Finally, external labelling of a green bond results in a 
significantly higher green premium compared to self-declared green bonds (Fatica et al., 2021). 
Zerbib (2019) was able to show similar results. Using a matching method, he estimates a small 
but significant premium of two basis points for green bonds compared to counterfactual 
conventional bonds. Karpf and Mandel (2018) on the other hand find that, ceteris paribus, 
financial markets discriminate against green bonds, when controlling for fundamental economic 
characteristics of the offering. However, they were able to show that the negative green 
premium turns positive over time and after 2011 the market rewards green bonds compared to 
similar conventional contracts. 

2.5 The Research Questions 
Summing up the literature review on the pricing of climate related risks it can be said that 
financial markets may have slowly started to price climate risks but overall continue to 
underestimate the scope and severity of climate risks (Battiston et al., 2019; Battiston et al., 
2017). To date, there is no analysis of firms’ stock market pricing in financial markets based on 
companies’ standardized CPRS exposure. As opposed to considering indices or industry 
averages as much of the outlined work did, the CPRS methodology is highly granular and 
precise on the firm level thus making it an ideal tool to classify firms’ climate transition risk 
exposure. This thesis thus bridges the outlined climate transition risk exposure research strand, 
which operationalizes the CPRS methodology, with research focused on financial market 
pricing using the market model in order to analyze the pricing of firms exposed to different 
degrees of climate transition risk. 

It does so by answering two guiding research questions, which reflect the two-part structure of 
the work. The first research question states:  

▪ How are global holding companies exposed to climate transition risk?  

Building on the results of the first research question the second research question continuous 
the inquiry by asking:  

▪ How is climate transition risk exposure priced by financial markets?  

The thesis thus shows the scope of climate transition risk exposure and its relevance on financial 
markets. The potential causal transmission channel runs from a firm’s climate transition risk 
exposure as measured by the CPRS classification towards significant differences in pricing on 
financial markets. Put differently: in the case of a disorderly low carbon transition, the risk 
exposure of firms might cause significant reevaluations of a firm’s value on financial markets 
as market participants might anticipate falling profitability and stranded assets of fossil fuel 
related companies (Battiston et al., 2020). If this thesis shows a significant relation between 
CPRS exposures and pricing, the results will substantiate the causal relation that climate 
transition risk matters on financial markets. 
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3. Methods & Data 
The research questions are answered with two distinct methodological approaches. The first 
research question is answered through the establishment of a company database which 
reclassifies 4-digit NACE codes into CPRS. The section of the thesis answering the second 
research question uses the generated dataset in order to quantitatively compare the financial 
market pricing of companies more/less at risk within a disorderly low carbon transition, i.e., 
with more/less climate transition risk. 

Before introducing the detailed methodologies, the key term climate transition risk, which was 
defined in the introduction, must be operationalized. Within the scope of this thesis, firms with 
high climate transition risk are firms engaged in CPRS 1-6, as they are directly climate policy 
relevant. Firms in CPRS 7-9 might also be relevant for climate policy, if for example a bank in 
CPRS 7-Finance exclusively provides loans to coal power plant operating firms. However, their 
direct relevance is limited, thus these firms are not the subject of inquiry for the second research 
question. Between the CPRS 1-6, CPRS 1-Fossil Fuel is the dirtiest one and thus carries most 
climate transition risk. The subchapter on the construction of dirty portfolios will go into more 
detail. 

3.1 Methods & Data for Research Question 1 
Table 1 and figure 1 show some summary statistics for the full dataset of 1023 companies, 
which is established in order to answer the first research question. Overall, the highest revenue 
is earned by JPMorgan Chase with above 150 billion US Dollars, however the dataset also 
contains many small companies, thus the mean revenue is only 3 billion US dollars. Across the 
CPRS the `Finance` (7) and `Other` (9) sector are largest in terms of mean revenue, however 
overall mean revenues for singular CPRS are low as most companies are only engaged in few 
CPRS. The result section will go into more detail. Almost half of the companies are 
headquartered in the US, while financial centers such as Great Britain, Switzerland or Hong 
Kong are also under the top 10 countries in the dataset. 

Table 1 | Summary statistics for parent company revenue in each CPRS. The Table depicts 

for each of the nine CPRS, the number of observations, the mean revenue per CPRS per 

company, the respective standard deviation as well as the lowest and highest observation in the 

sample. Actual revenues can differ as only revenues categorized into CPRS were counted. All 

numbers, besides observations, are in million US Dollars. Authors’ own calculation. 

 Variable  Obs.  Mean  Std. Dev.  Min  Max 
 CPRS1 1023 15 174 0 2985 
 CPRS2 1023 12 159 0 3060 
 CPRS3 1023 49 851 0 26275 
 CPRS4 1023 32 284 0 8012 
 CPRS5 1023 96 1480 0 36136 
 CPRS6 1023 1 15 0 361 
 CPRS7 1023 2258 11049 0 142502 
 CPRS8 1023 1 10 0 201 
 CPRS9 1023 283 1463 0 27079 
 All CPRS 1023 3057 12167 0 156063 
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Figure 1 | Top 10 countries in the dataset. The X-axis illustrates the number of companies, 

while the Y-axis shows the top 10 countries where the 1023 companies of the dataset are 

headquartered.  

In order to answer the first research question, this thesis follows the CPRS classification 
pioneered by Battiston et al. (2017). The overarching goal of step one of the analysis is to 
classify company revenues into the nine CPRS main groups. This work exclusively focuses on 
publicly listed, active, and global companies classified as holdings (NACE 64.20), head offices 
(NACE 70.10), Public relations and communication activities (NACE 70.21) as well as 
consultancy activities (NACE 70.22) since to date no CPRS classification was performed for 
this NACE range.  

To enable the categorization of holding companies into CPRS, a novel approach, which is solely 
based on subsidiary revenue information, is developed. This thesis focuses on subsidiaries 
because they provide a better picture of the real business activities of the parent company since 
the NACE code of the parent would be classified as `Finance`, whereas the NACE codes of the 
subsidiaries might unveil that the parent (through its subsidiaries) is actually involved in many 
very climate policy relevant business activities. Most notably, it is assumed that parent company 
revenues can be explained by the sum of all subsidiary revenues and that the share of subsidiary 
revenue in CPRS equals the parents share of business activities in CPRS. More formally, this 
assumption can be written as: 

(3.1) RVi = ∑ RVijnj=0  

Where RVi is the parent revenue of company i. RVij on the other hand is the revenue of the j’th 
subsidiary of parent company i. While this assumption simplifies the methodology, it is not 
always fully accurate because the sum of subsidiary revenues sometimes exceeds the parent 
company revenue or is significantly lower. This can be explained by the non-consolidated 
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nature of subsidiary revenues and missing revenue information for some subsidiaries 
respectively. 

In line with Lumsdaine et al. (2021), this thesis only considers first level subsidiaries in which 
the parent possesses more than 50% of ownerships rights. Furthermore, all firms without 
subsidiary information for at least one subsidiary are excluded since the methodology can only 
be applied for companies with at least one subsidiary. Finally, companies with zero or negative 
revenues are excluded. 

In order to overcome incomplete subsidiary data and to best use all the available information a 
novel threefold methodology is introduced, which depends on the relation of parent revenue to 
the sum of subsidiary revenues: 

Case 1:  

(3.2)  RVi < ∑ RVijnj=0   

If the sum of subsidiary revenues is higher than the parent revenue, the CPRS exposure of the 
parent company revenue is estimated based on the shares of subsidiary revenues. It is therefore 
assumed that parents’ revenues are well explained by the available subsidiary revenues, because 
no revenue of the parent company remains unexplained. The surplus revenue on the subsidiary 
side is most likely explained by the non-consolidated nature of subsidiary revenues which do 
not eliminate intercompany sales. Thus, it is assumed that the excess subsidiary revenue is 
equally distributed to the rest of the revenue. 

Case 2: 

(3.3) RVi = ∑ RVijnj=0  

If the sum of available subsidiary revenue equals the parent revenue, the CPRS exposure of the 
parent revenue is estimated based on shares of available subsidiary revenues. Again, it seems 
reasonable to assume that the parents’ revenue exposure is well explained by the available 
subsidiary information since no revenue gaps are apparent. 

Case 3:  

(3.4) RVi > ∑ RVijnj=0  

If the sum of available subsidiary revenue is smaller than the parent revenue, the CPRS 
exposure of revenue is also estimated based on subsidiary revenues, however missing 
subsidiary revenues are estimated using a correctional mechanism. The correctional mechanism 
uses the revenue gap between parent revenue and sum of subsidiary revenue and distributes it 
equally to all remaining subsidiaries with available NACE codes but with missing revenue 
information. In this way, the available industry classification of subsidiaries is not omitted. This 
approach assumes that the revenue distribution of the remaining parent company revenue can 
be approximated only by the number of subsidiaries without revenue information in the 
respective segments. 
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Finally, for all three cases it is also assumed that the subsidiary revenue with missing NACE 
codes which had to be excluded is equally distributed relative to the rest of the subsidiary 
revenue with available NACE codes. However, since there is relatively little subsidiary revenue 
without NACE classification, this assumption, if violated, should not impair the overall 
significance of the results. For all three cases, subsidiary revenues are classified into CPRS 
according to their 4-digit NACE code industry classification in order to estimate the respective 
climate transition risk exposure of the parents. The classification is based on the work of 
Battiston et al. 2017 and Battiston et al. 2020 and is performed in an automatic manner due to 
the large size of the dataset containing roughly 35,000 subsidiaries of 1,023 holding companies. 
The sum of revenues in each CPRS is then divided by the total revenue of the parent in order 
to estimate the relative exposure of the parent holding company to each CPRS. 

Generally, the results of this methodology are highly dependent on the availability and quality 
of data on subsidiaries, which are often private and thus associated with significant data gaps. 
However, this methodology was tested for +20 companies with large subsidiary information 
gaps by comparing the results from the highlighted methodology with the business segment 
information from company filings. While the chosen methodology is not 100% accurate, it does 
reasonably well in approximating CPRS exposure for global holdings, even if large data gaps 
are apparent. The estimates are better, the more complete subsidiary data is available. Hence 
the threefold methodology can be regarded as a best guess estimate using all the publicly 
available information on parent and subsidiary companies. The alternative to this novel 
methodology is the manual analysis of parent company annual reports, which is too time 
consuming for such a large quantity of companies, thus the proposed methodology is chosen. 

The data for the first part of the research question is retrieved from the databases Orbis (Bureau 
van Dijk) and Refinitiv Eikon. The databases provide detailed information about company 
revenues, business lines, subsidiaries, NACE codes and subsidiary revenues. Missing revenue 
data is augmented by data retrieved from the Eikon database. This thesis utilizes the latest 
available data for revenues of subsidiaries. This is typically 2020, but in some cases 2019 data 
was used. Since the climate transition risk exposure is not tracked over time, it is implicitly 
assumed that the CPRS exposure of holdings remains constant over time. The data can be 
downloaded directly into Excel sheets, which facilitates further analysis in Excel. 

3.2 Methods & Data for Research Question 2 
The second part of the research questions is answered building on the CPRS classification of 
global holdings.  

3.2.1 Construction of Dirty Portfolios 
In order to test whether the market prices companies’ climate transition risk exposure, this thesis 
constructs various dirty portfolios. Ideally, several portfolios within one CPRS would have been 
constructed in order to compare companies with clean and dirty energy technologies, e.g., 
internal combusting engine manufacturers vs. low emission vehicle- or rail companies. 
However, due to the limited number of companies in CPRS, this thesis concentrates on dirty 
portfolios with different climate transition risk exposure thereby highlighting different `shades 
of dirty`. 

Portfolios are created based on the revenue exposure in CPRS, utilizing the databank of holding 
companies established in step one of this thesis. When a company earns above 50% of its 
revenue in one CPRS it qualifies for being added to a respective portfolio containing this CPRS. 
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The dirtiest portfolio, bearing most climate transition risk, is constructed by using all companies 
being predominantly engaged in CPRS 1 – Fossil Fuel, since the very business model of these 
companies is purely focused on the extraction and production of fossil fuels as primary energy 
carriers (Battiston et al., 2020). Additionally, companies in CPRS 1 bear significant risk of 
stranded assets through the massive infrastructure erected to extract fossil energy carriers (Van 
der Ploeg & Rezai, 2020a). The dirty portfolio bearing less climate transition risk than the very 
dirty one, is constituted by firms predominantly engaged in CPRS 2 (Utility), 3 (Energy 
Intensive), 4 (Buildings), 5 (Transportation) and 6 (Agriculture). These sectors often utilize 
fossil fuels, for example in heat sources for housing or as an energy carrier for industrial 
processes. However, firms in CPRS 2-6 can switch and diversify to alternative low carbon 
energy sources more easily than firms in CPRS 1-Fossil Fuels. Thereby they can mitigate the 
climate transition risk exposure more easily than companies in CPRS 1–Fossil Fuel, whose core 
business model is the extraction of such energy carriers (Battiston et al., 2020).  This thesis also 
estimates singular portfolios for CPRS 3, 4 and 5 respectively. However, no portfolios 
consisting of CPRS 6- Agriculture and CPRS 2–Utility were created since only 3 (4) companies 
are predominantly engaged in CPRS 6 (2) respectively. 

For portfolios containing more than one CPRS, i.e., the dirty portfolio, the revenue shares are 
summed up. If for example a company is earning 33% of revenues in both CPRS 2 and 3 it is 
still added to the dirty portfolio even though it does not earn above 50% in one CPRS, however 
the company is not added to the singular portfolios `Energy Intensive` or `Utility`. In total five 
portfolios are constructed which are summarized in table 2. The Dirty and Very Dirty portfolios 
are in italics and will be referred to as `baseline portfolios` since the other portfolios are just 
subsets of the dirty portfolio and the main focus of this thesis is the comparison of portfolios 
(highly) at risk within a disorderly climate transition. However, as it is difficult to assess 
whether the Buildings portfolios is more at risk than the Energy Intensive one, no order is 
presumed for CPRS 2-6 in terms of climate transition risk. 

Table 2 | Dirty portfolios utilized for the regressions and description of its constituents. 

Authors’ own illustration. 

Portfolio Name CPRS 
included 

Number of 
companies 
contained 

Examples of activities included 

Very Dirty CPRS 1 9 Mining of coal and lignite, extraction 

of natural gas 

Dirty CPRS 2-6 115 Electric power generation, 

transmission and distribution, 

manufacture of motorcycles, real 

estate activities, air transport 

Energy Intensive CPRS 3 33 Manufacture of batteries and 
accumulators 

Buildings CPRS 4 40 Construction of buildings 

Transportation CPRS 5 26 Construction of roads and railways 

 
The firms constituting the various portfolios are weighted in two different ways. First, the 
portfolios constituents are dynamically weighted based on their monthly market capitalizations 



14 

 

relative to the total monthly market capitalization of the portfolio over time. The return for the 
value weighted portfolio can thus be written as: 

(3.5)   Rit =∑ ωijtRijtnj=0   

With Rit being the return of portfolio i at time t, and Rijt the return of firm j of portfolio i at 
time t. Rijt is calculated with: 

(3.6)  Rijt = Rijt−Rijt−1Rijt−1 . 

This thesis uses portfolio net returns, because, in contrast to log returns, net returns are portfolio 
additive, which is useful given that I estimate portfolio returns with the sum operator. 

The monthly relative weighting factor of firm j in the value-based portfolio i is ωijt. ωijt is 
calculated through: 

(3.7)  ωijt= 
MCijtMCit  

with MCijt being the market capitalization of firm j of portfolio i at time t. MCit is the market 
capitalization of portfolio i at time t. 

Second, firms are equally weighted over the whole period t. The weighting factor for portfolio 
i at time t is then simply: 

(3.8)  φit= 
1Nit 

With Nit being the number of firms in the respective portfolio i at time t. The return of an 
equally weighted portfolio is calculated through: 

(3.9) Rit =φit ∑ Rijtnj=0  = 
1Nit ∑ Rijtnj=0  

Note that φit for each portfolio is just a constant, thus it can be excluded from the sum. The 
return for each equally weighted portfolio is then simply the constant times the sum of firms 

returns. Since the weighting factor equals 
1Nit , the return can also be regarded as the average of 

firms returns in each portfolio.  

The advantage of an equally weighted portfolio is that it controls for outliers in terms of market 
capitalization. In the value weighted portfolio some firms dominate portfolios with extremely 
high market capitalization compared to the other constituents. However, the equally weighted 
portfolio gives higher weights to smaller firms, which very often have more incomplete stock 
market data. Thus, the baseline estimates are performed with value weighted portfolios. 

3.2.2 Estimation of Several Market Models 
In order to compare the pricing of different dirty portfolios on financial markets, this thesis 
estimates a CAPM since the CAPM is still the benchmark approach for portfolio pricing 
analysis on financial markets. The CAPM estimates an asset’s systematic risk (beta) by means 
of an OLS time series regression. More formally, the market model is estimated through the 
following equation: 
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(3.10) Rit − RFt = αi+βi(RMkt − RFt)+ϵit  Rit is the return of the CPRS based dirty portfolios in time period t, calculated trough either 
(3.9) or (3.5). One time period t corresponds to one month in the time series. The whole time 
series starts in January 2010 and continues until the most recent available data which is June 
2021. So, in total 138 different time periods are utilized for the time series regression equaling 
exactly 11.5 years. RFt is the risk-free rate of return, approximated by the 1 Month US Treasury 
Bill Rate. Rit − RFt is thus the excess return of the constructed dirty portfolios at time t. RMkt 
symbolizes the return of market portfolio k at time t. Again, it follows that RMkt − RFt is the 
excess return of market portfolio k against the risk-free rate. This thesis uses multiple market 
portfolios, but since the dataset contains global companies, the Morgan Stanley Capital 
International (MSCI) world index will be the baseline market portfolio. Due to highly sparse 
dividend data availability and portfolios containing many small companies, dividend returns 
were not added to the total returns as this would skew results towards larger firms with better 
dividend data availability. But since the MSCI world index also excludes dividends, 
comparisons are still valid. 

αi and βi are time invariant stationary parameters, which are estimated through formula (3.10). 
αi is Jensen’s alpha coefficient, estimated for portfolio i. The alpha coefficient is the intercept 
of the regression. Alpha is positive if one of the portfolios outperforms the market on a risk 
adjusted basis and negative if a given portfolio underperforms the market. If the portfolio 
performs in line with the market, alpha will be zero, i.e., the regression line runs through the 
origin. The beta coefficient measures the systematic risk of portfolio i against the market. βi =1 implies a systematic risk of portfolio i in line with the market portfolio, and βi > 1 a larger 
systematic risk than the market portfolio. Notably, both αi and βi are time invariant, thus they 
do not come with the subscript t. Finally, ϵit is the serially uncorrelated random error term with: 

(3.11) E(ϵit) = 0, 

(3.12) V(ϵit) =  σ2 

(Jensen, 1968; Pham & Phuoc, 2020). 

Additional to the one factor CAPM model, a Fama French 3-Factor Model is estimated through 
the following equation: 

(3.13) Rit − RFt = αi+β1i(RMkt − RFt) + β2iSMB + β3iHML + ϵit  

Both the HML and SMB additional factors are estimated through two further beta coefficients 
for each respective portfolio, the rest of the coefficients and its properties remain unaltered 
(Fama & French, 1993). 

In order to test the significance of the coefficient estimates, simple t tests are performed. The 
common significance level is, if not specified differently, 0.05. 

In addition to the aforementioned models, which incorporate the whole time frame, this thesis 
also estimates rolling regressions in order to analyze the evolution of estimated coefficients 
over time. A rolling regression applies a specific time window over the time series dataset and 
repeats the regression with the constant window moving up in time until the end of the time 
series is reached. A two year / 24 - month time window is utilized, but different time windows 
yielded roughly comparable results. 
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This thesis also performs a Chow Test (Chow, 1960), in order to test for the existence of a 
structural break in the regressions after the Paris Agreement, which constituted a key global 
climate policy announcement, in line with Monasterolo and De Angelis (2020). This is 
permissible as the Paris Agreements impacts could not have been priced into assets prices as 
the agreement was a surprise for most observers. The date for the suspected break is January 
2016 since the Agreement was adopted on the 12th of December 2015. Sometimes a structural 
break occurs if information about certain policy changes is public before adoption or if public 
announcements are made in advance. However, since the adoption of the Paris Agreement was 
a surprise, the Paris Agreement is treated as an exogenous shock and the suspected break point 
is put directly after the Agreement. This thesis tests for structural breaks in the slope/beta 
parameter, the intercept/alpha as well as for the whole model. However, structural breaks in the 
beta coefficient, i.e., the level of systematic risk, after the Paris Agreement are of most interest. 

3.2.3 The Time Series Data 
The time series data for stock notations, the index notations and the data on market 
capitalizations were retrieved from Refinitiv Eikon, however some data gaps were filled using 
the Orbis databank, wherever possible. The monthly data for the Fama French 3-Factor Model 
as well as the risk-free rate of return were retrieved from Ken French’s Website1. All 
computations were performed in Microsoft Excel and Stata. 

The dataset of global holding companies contains many small companies and 
missing/incomplete data on stock returns was a severe issue. Thus, companies with more than 
one year of missing monthly returns were excluded. Small data gaps were interpolated (if 
possible) by utilizing the linear function in Excel. Likewise, the data on market capitalization 
was also incomplete, similarly to the stock market returns, data was interpolated, thereby 
utilizing a maximum of available information. After all interpolations and exclusions, the 
universe of relevant companies for the CAPM regressions included 124 companies operating 
predominantly in CPRS 1-6. 

Table 3 highlights key descriptive statistics for the time series data, answering the second 
research question. The mean return is positive for all portfolios and indexes illustrating the good 
stock market performance of the last decade. However, some portfolios (dirty, Energy 
Intensive) or indexes (Fama French market factor or Standard & Poor’s (SP) 500) shows higher 
mean returns compared to other portfolios or indexes. Naturally, larger portfolios are more 
diversified and thus show a lower variation compared to singular CPRS portfolios such as the 
Energy Intensive one, which exhibits the highest standard deviation in the sample. Generally 
monthly returns vary widely from -37% for the very dirty portfolio to a performance of +83% 
monthly for the Energy Intensive portfolio. Again, the smaller the portfolios, the more extreme 
the monthly returns. Not surprisingly, the monthly net returns of the market indexes show 
considerably lower volatility as well as extreme returns. 

 

 

 

 

1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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Table 3 | Summary statistics for stock return time series. The Table depicts descriptive 

statistics for the net monthly excess stock returns of several constructed portfolios as well as 

market indexes. Portfolio data is in the first seven rows, index data in the next four and the last 

two rows indicate data for the two Fama French Factors HML (high minus low) and SMB 

(small minus big). If not otherwise specified, all portfolios are value weighted. All portfolios 

and indexes are corrected with the risk-free rate of return, thus highlighting monthly net excess 

returns. Mean, standard deviation, minimum and maximum are all displayed as percentage 

returns. Authors’ own calculation. 

Portfolio/Index  Obs  Mean  Std. Dev.  Min  Max 
 Dirty 138 .011 .058 -.275 .338 
 Dirty (equally)  138 .015 .055 -.205 .327 
 Very Dirty 138 .005 .054 -.372 .227 
 Very Dirty (equally) 138 .005 .079 -.292 .427 
 Energy Intensive 138 .014 .096 -.239 .829 
 Buildings 138 .011 .065 -.261 .544 
 Transportation 138 .008 .064 -.329 .297 
 MSCI World 138 .004 .043 -.147 .126 
 Euro Stoxx 600 138 .001 .04 -.16 .136 
 SP 500 138 .007 .041 -.137 .127 
 FF French Market 137 .012 .042 -.134 .137 
 SMB 137 .001 .024 -.05 .072 
 HML 137 -.003 .028 -.14 .082 
 

3.2.4 Regression Diagnostics  
This work also tests the time series dataset for common OLS assumptions. While 
multicollinearity was no issue in a one factor market model, there are some outliers in terms of 
valuation and stock returns. The extreme stock movements were kept in the dataset as they are 
part of financial market trading. More problematic are the outliers in terms of market 
capitalization as some companies dominate the portfolio compositions. A good example is the 
Porsche SE holding with a current market value of almost 30 billion $, which corresponds to 
roughly 15% weight of the dirty portfolio and even roughly 30% of the singular Transportation 
portfolio. While this is a heavy weight, there was no basis to exclude such highly weighted 
companies. As a stability test to the results, this thesis also presents an equally weighted 
portfolio in order to control for outlier companies with extreme weights. The OLS regression 
also assumes a linear relation between dependent and independent variables. This assumption 
seems very valid as scatter plots between market- and portfolio returns are highly linearly 
related. Omitted variables are always a problem in econometrics, however, usually there is no 
easy solution to fix this. While the standard CAPM model is rather basic with only one 
explanatory factor variable, this thesis also presents the Fama French 3-Factor Model to account 
for potentially important other explanatory variables. 

The gravest problem for the regression was posed by the heteroscedasticity of most portfolio 
datasets, thereby violating the homoscedasticity assumption of standard OLS. In case of 
detected heteroscedasticity, Heteroscedasticity and Autocorrelation Consistent standard errors 
were employed in order to guarantee efficient coefficient estimates. Finally, the regressors in 
the baseline CAPM model are highly diversified stock market indexes composed of many 
companies, which are in the case of the MSCI world index even globally distributed. This 
should weaken potential correlation with the stochastic element of the model.  
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4. Results 
In what follows the results of this work are presented in order to answer both research questions 
on the climate transition risk exposure and on its implications for financial market pricing. 

4.1 Climate Transition Risk Exposure of Global Holdings 
The dataset at hand includes global holding companies, which are engaged throughout a variety 
of economic activities. The merit of this thesis is to break down the economic activities of 
holdings into as much detail as possible, thereby going beyond the categorization of holdings 
as purely financial and not directly climate relevant. Through the subsidiary approach, the 
revenues of holding enterprises can be categorized into CPRS to a high degree of accuracy. The 
following two figures help better understand the revenue distribution of holding companies and 
thereby provide an answer to the first research question, i.e., the climate transition risk exposure 
of holding companies as measured by CPRS exposure. 

 

Figure 2 | CPRS exposure of global holding companies. The left bar indicates the percentage 

distribution of revenues into CPRS of all companies contained in the dataset. The right bar 

highlights the percentage distribution of the number of companies being predominantly 

engaged (>50%) in one CPRS. Again, the bar features all companies contained in the dataset. 

Authors’ own illustration. 

In figure 2 the climate transition risk exposure, measured by CPRS exposure, of the whole 
dataset of 1023 holding companies is portrayed. Most notably, most holdings are engaged in 
CPRS 7 - Finance, which is expectable given that the dataset contains many large financial 
conglomerates such as HSBC or Wells Fargo. However, there is also significant revenue in 
other sectors, for example 10% of all revenues and even 20% of all firms are engaged in CPRS 
9 – Other. The third largest CPRS in terms of revenue is CPRS 5 – Transportation with 3.5%. 
While 4% of all companies in the dataset are categorized as CPRS 4 – Buildings, they only 
represent 1% of all revenues, indicating that many companies in CPRS 4 generate below 
average revenues. The other CPRS are comparably small, both in revenue as well as in number. 
Adding the results for CPRS 1-6, it can be said that 7.5 % of all revenues are earned in these 
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CPRS. In terms of company number, 12% of firms earn their revenues predominantly (>50%) 
in CPRS 1-6. 

 

Figure 3 | CPRS 1-6 exposure of global holding companies. The left bar indicates the 

percentage distribution of revenues in CPRS 1-6 of all companies contained in the dataset. The 

right bar highlights the percentage distribution of the number of companies with above 50% 

revenues in CPRS 1-6. Authors’ own illustration. 

Figure 3 zooms into CPRS 1-6, which are the focus of this work. Again, companies risk 
exposure is highlighted in terms of revenue as well as in terms of number of companies 
predominantly engaged in certain CPRS. The 7.5% of total revenue earned in CPRS 1-6 is 
focused in CPRS 5 – Transportation (47% of CPRS 1-6 revenue) and to a lesser degree in CPRS 
4 – Buildings (16% of CPRS 1-6 revenue) as well as CPRS 3 – Energy Intensive (24% of CPRS 
1-6 revenue). CPRS 6 is negligible in terms of revenue, CPRS 1 and 2 stand for 8% and 6% 
respectively. 

Interestingly, the 12% of companies with above 50% revenue generated in CPRS 1-6 are more 
equally distributed, highlighting the concentration of few very big companies in CPRS 5. An 
example is the International Consolidated Airline group, with British Airways as a top 
subsidiary generating large revenues. The largest number of companies is engaged in CPRS 3-
5, 40 companies earn most revenues in CPRS 4 – Buildings, 33 in CPRS 3- Energy Intensive 
and 25 in the Transportation CPRS. Only few companies earn the majority of revenues in CPRS 
1,2 and 6. Such informative and detailed revenue exposure would be lost if all holding 
companies were simply assigned to CPRS 7 – Finance. 

4.2 Pricing of Climate Transition Risk on Stock Markets 
Building on the climate transition risk exposure results, the pricing of dirty portfolios, as 
highlighted in the method section, can be compared in order to answer the second research 
question. The results section contains different subchapters. First, the pricing of the baseline 
portfolios containing the CPRS 1, as well as CPRS 2-6, is compared against market indexes. In 
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the following section, the same exercise is repeated for some singular portfolios. Further 
sections extend the analysis to the Fama French 3-Factor Model, perform rolling CAPM 
regression and finally test the time series data for a structural break point after the Paris Climate 
Agreement. 

In order to sort the results and to operationalize the second research question, this thesis will 
work with five testable hypotheses, which together answer the question whether the financial 
market is pricing climate transition risk into stock market prices or if the climate transition risks 
are mispriced/ignored by financial markets. They can also be seen as expectation for an efficient 
market, because such a market would price all information about climate risks immediately into 
security prices (Malkiel & Fama, 1970).  

▪ Hypothesis 1: Very dirty firms exhibit a higher beta than the market average. 

▪ Hypothesis 2: Dirty firms exhibit a higher beta than the market average. 

▪ Hypothesis 3: Very dirty firms exhibit a higher beta than dirty firms. 

▪ Hypothesis 4: Very dirty firms exhibit a strongly rising beta value over time. 

▪ Hypothesis 5: Dirty firms exhibit a rising beta value over time. 

4.2.1 Baseline Portfolios against Market 
The two baseline portfolios are best suited to test the hypotheses. The baseline very dirty 
portfolio consists of very GHG intensive fossil fuel companies while the dirty portfolio across 
the CPRS 2-6 mostly contains companies utilizing fossil fuels. Results for the CAPM regression 
for the dirty portfolio against several market factors can be observed in table 4. 

Table 4 | CAPM regression results for the dirty portfolio. The column headers highlight 

different dirty portfolios and its weighting methodology. The rows illustrate the regression 

results for several market factors and the constant. The last two rows show the number of 

observations as well as the estimated R squared. Robust standard errors are in parentheses. 

The significance levels are: *** p<0.01, ** p<0.05, * p<0.1. Authors’ own calculation. 

 (1) (2) (3) (4) (5) 
 
VARIABLES 

Value 
Weighted 

Dirty 
Portfolio 

Equally 
Weighted 

Dirty 
Portfolio 

Value 
Weighted 

Dirty 
Portfolio 

Value 
Weighted 

Dirty 
Portfolio 

Value 
Weighted 

Dirty 
Portfolio 

      
MSCI World 1.034*** 0.734***    
 (0.128) (0.0913)    
FF Market Factor   1.005***   
   (0.0829)   
Euro Stoxx 600    1.095***  
    (0.126)  
SP 500     1.034*** 
     (0.134) 
Constant/Alpha 0.00736** 0.0125*** -0.000784 0.0102*** 0.00443 
 (0.00321) (0.00389) (0.00361) (0.00326) (0.00339) 
      
Observations 138 138 138 138 138 
R squared 0.569 0.322 0.519 0.563 0.530 
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As depicted in the regression output for the value weighted dirty portfolio, the market factor 
can explain large parts of the variation in excess stock returns of the dirty portfolio. This is 
highlighted by the R squared of 0.57 for the MSCI world index, indicating that the dirty baseline 
portfolio is reasonably diversified albeit not as diversified as the market index. The intercept, 
or Jensen’s alpha, is significantly positive on a 5% level, which implies that the dirty portfolio 
outperformed, on a risk adjusted basis, the market index. The market regressor or the beta 
coefficient of 1.03 is highly significant on all common levels, however since the CAPM predicts 
a beta value of one, the key questions is rather whether the beta coefficient is significantly 
different from 1. Thus, every regression is always combined with a t test of the beta coefficient 
against the null hypothesis that beta equals 1. For the dirty portfolio this hypothesis cannot be 
rejected, implying thus that the portfolio is exposed to similar systematic risk levels as the 
market portfolio. 

Table 4 also compares the CAPM regression results for the dirty portfolio against other market 
indexes, namely the Fama French Market factor (using all stocks listed on New York Stock 
Exchange, American Stock Exchange, or NASDAQ), the Euro Stoxx 600 and the SP 500. The 
results are all roughly comparable to the MSCI world baseline market index. Most notably, the 
dirty portfolio significantly outperforms the Euro Stoxx 600 index, as measured by Jensen’s 
alpha, which is highly significant and positive. These results are not observable for both the 
Fama French Market factor and the SP 500 as the intercept is not significantly different from 
zero for both indexes. This result can be easily explained by the outperformance of American 
stocks, against European stocks as indexed in the Euro Stoxx 600 in the last decade. Thus, while 
the dirty portfolio is able to outperform a European and Global stock market index, it cannot 
outperform any American index over a 10-year time span. As already observed in the baseline 
CAPM model, the beta is not significantly different from 1 for any other stock market index. 
Finally, the R squared values are all roughly comparable to the baseline regression results. 

A different message emerges from the equally weighted dirty portfolio. While the 
alpha/intercept estimate again is significantly positive on all common significance levels, the 
beta coefficients is now also significantly below 1, implying below market risk for the equally 
weighted portfolio. Interestingly the R squared is saliently lower (0.32) than the R squared of 
the value weighted portfolio (0.57). This sizable lower explained variation in the dependent 
variable might be a reason for the somewhat surprising result that the beta coefficient is below 
1, as the model does not seem to do a good job in explaining the dependent variable. As outlined 
before, the equally weighted portfolio does also give more weight to smaller companies, which 
have worst data availability, also potentially explaining the strong difference in results. 
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Table 5 | CAPM regression results for the very dirty portfolio. The column headers show 

several very dirty portfolios and its weighting methodology. The rows illustrate the regression 

results for several market factors as well as the constant. The last two rows show the number 

of observations as well as the estimated R squared. Robust standard errors are in parentheses. 

The significance levels are: *** p<0.01, ** p<0.05, * p<0.1. Authors’ own calculation. 

 (6) (7) (8) (9) (10) 
 
VARIABLES 

Value 
Weighted 

Very 
Dirty 

Portfolio 

Equally 
Weighted 

Very 
Dirty 

Portfolio 

Value 
Weighted 

Very 
Dirty 

Portfolio 

Value 
Weighted 

Very 
Dirty 

Portfolio 

Value 
Weighted 

Very 
Dirty 

Portfolio 
      
MSCI World 0.707*** 1.077***    
 (0.191) (0.170)    
FF Market Factor   0.714***   
   (0.196)   
Euro Stoxx 600    0.720***  
    (0.217)  
SP 500     0.740*** 
     (0.198) 
Constant/Alpha 0.00205 0.00107 -0.00403 0.00384 -0.000367 
 (0.00413) (0.00531) (0.00508) (0.00397) (0.00440) 
      
Observations 138 138 138 138 138 
R squared 0.312 0.334 0.309 0.286 0.320 

 

As depicted in table 5, the CAPM time series regression for the value weighted very dirty 
portfolio of fossil fuel companies yields interestingly different results compared to the dirty 
portfolios. Most notably the alpha or intercept of the portfolio is not significant on any 
significance level for the MSCI world market factor. This implies that the very dirty portfolio 
does not generate excess returns adjusted for the market risk. While the beta or market regressor 
appears to be low, it is not significantly different from 1, when controlling for the 
heteroscedasticity of the data. This result indicates that the very dirty portfolio exhibits a 
comparable sensitivity of portfolio returns to systematic risk as market returns. Furthermore, 
the R squared of just 0.31 is lower than for the value weighted dirty portfolio, which is 
expectable as this portfolio contains considerably less companies and is thus less diversified. 
Comparable results are also obtained for the equally weighted portfolio.  

Again, the stability of results is tested by running the same CAPM regressions against the three 
other market factors, i.e., the Fama French Market, the Euro Stoxx 600 and the SP 500. Every 
time and in line with the previous results for the very dirty portfolio, the beta is not significantly 
different from 1 and the alpha not different from zero. This is in line with theoretical 
expectations, but not necessarily expectable given that these companies are subject to the 
highest climate transition risk. 
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4.2.2 Singular CPRS against Market 
Beyond the two baseline models, CAPM time series regressions for all other value weighted 
singular CPRS portfolio are estimated, if there is enough company information available, i.e., 
for the portfolios constituted by the CPRS 3,4 and 5. 

Table 6 | CAPM regression results for the Energy Intensive, the Buildings and the 
Transportation portfolio. The column headers illustrate the different portfolios and their 

weighting methodology. The rows show the regression results for the MSCI world index as the 

market factor as well as the constant. The last two rows show the number of observations as 

well as the estimated R squared. Robust standard errors are in parentheses. The significance 

levels are: *** p<0.01, ** p<0.05, * p<0.1. Authors’ own calculation. 

 (11) (12) (13) 
VARIABLES Value Weighted 

Energy Intensive 
Portfolio 

Value Weighted 
Buildings 
Portfolio 

Value Weighted 
Transportation 

Portfolio 
    
MSCI World 1.239*** 0.835*** 1.024*** 
 (0.226) (0.110) (0.0930) 
Constant/Alpha 0.00864 0.00774 0.00375 
 (0.00621) (0.00471) (0.00396) 
    
Observations 138 138 138 
R squared 0.305 0.296 0.472 

 

Results as highlighted in table 6 indicate no surprising differences between the CPRS and are 
largely aligned with the dirty portfolio as well as the very dirty portfolio results. Most notably 
the results are all in line with classic CAPM predictions, i.e., all betas are not significantly 
different from 1, and all intercepts/alphas are not statistically different from 0. Thereby 
indicating no significantly different systematic risk figures as well as no risk adjusted 
outperformance against the market index. Interestingly, this partly contradicts the results for 
the dirty portfolio, as the alpha was found to be higher than 0 for some market indexes. The R 
squared, or portion of stock return variation which can be explained by the market, are all lower 
than in the dirty portfolio ranging from 0.30 for the Buildings and Energy Intensive portfolios 
to 0.47 for the Transportation portfolio. 

4.2.3 The Fama French 3-Factor Model  
This thesis also estimates a Fama French 3-Factor Model, which includes two additional 
explanatory variables beyond the market factor, namely the SMB size factor as well as the HML 
value premium factor. This model can be seen as a further stability test to the baseline regression 
results, i.e., the simple one factor CAPM model. In order to make the results more comparable 
to the baseline CAPM regression, the 3-factor model is altered slightly by not using the market 
factor proposed by Fama and French, but instead using the baseline market factor of this thesis, 
i.e., the MSCI world index adjusted for the risk-free rate. 
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Table 7 | Fama-French 3-Factor regression results for the dirty and the very dirty portfolio. 

The column headers show the portfolios and their weighting methodology. The rows highlight 

the regression results for the MSCI world index as the market factor as well as the SMB and 

HML factor. The SMB (small minus big) factor captures potential size premia while the HML 

(high minus low) factor controls for potential value premia. Additionally, the next row shows 

the regression results for the constant. The last two rows show the number of observations as 

well as the estimated R squared. Robust standard errors are in parentheses. The significance 

levels are: *** p<0.01, ** p<0.05, * p<0.1. Authors’ own calculation. 

 (14) (15) (16) (17) 
VARIABLES Value 

Weighted 
Dirty 

Portfolio 

Equally 
Weighted 

Dirty 
Portfolio 

Value 
Weighted 
Very Dirty 
Portfolio 

Equally 
Weighted 
Very Dirty 
Portfolio 

     
MSCI World 0.939*** 0.647*** 0.593*** 1.057*** 
 (0.101) (0.0953) (0.136) (0.167) 
SMB 0.224** 0.228 0.234 0.124 
 (0.112) (0.166) (0.156) (0.207) 
HML 0.376*** 0.323** 0.475* 0.00180 
 (0.144) (0.139) (0.271) (0.235) 
Constant/Alpha 0.00861*** 0.0136*** 0.00335 0.00114 
 (0.00313) (0.00385) (0.00351) (0.00516) 
     
Observations 137 137 137 137 
R squared 0.613 0.363 0.387 0.336 

 

As shown in table 7, results for the CPRS 2-6 dirty portfolio in a 3-factor model are in line with 
the one factor model results of the baseline regression. While the alpha is significantly positive 
for both dirty portfolios, the beta is only statistically different from 1 for the equally weighted 
portfolio. These results might provide a hint that the CAPM one factor regression for the equally 
weighted portfolio did not suffer from model misspecification or omitted variable bias, since 
the results were replicated with more relevant explanatory variables. Concerning the two novel 
factors, the SMB factor is only significant in the value weighted dirty portfolio. The HML factor 
is highly significant for both dirty portfolio estimates, indicating that there might be a premium 
associated with value stocks in the dirty portfolios. The R squared is higher compared to the 
one factor models, which can be expected when one adds more variables to a regression model. 
However, the adjusted R squared, that is better suited for comparing models with a different 
number of regressors, is only slightly higher than the one factor model. Comparing the increase 
in R squared to the one factor model, it needs to be highlighted that the increases are only 
marginal compared to the large increases observed in Fama and French (1993) when they added 
the HML and SMB factors. 

Results for the Fama French 3-Factor Model for the very dirty portfolio highlight similar 
patterns albeit with one key difference. Now the beta estimate for the value weighted portfolio 
is significantly lower than 1. A result which would not be expected, as based on Fama and 
French (1993) one would rather expect the opposite, i.e., coefficient estimates for beta converge 
more towards 1 while estimates for alpha converge towards the expected value of 0. Apart from 
this finding, the alphas remain unsignificant and the adjusted R squared numbers only rise 
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marginally. None of the two novel factors is significant on a 5% level for the very dirty 
portfolios, providing more evidence that the 3-factor model, for this dataset, is not better suited 
in explaining the excess returns of the estimated portfolios. 

4.2.4 Estimating Rolling Regression Models  
Finally, the aforementioned models can also be estimated through rolling regressions in order 
to account for some potential dynamic effects in the estimated alphas or betas as well as 
structural breaks after certain key events. Trends in coefficient estimates could inform about 
potential changes in the perception and pricing of climate transition risks over time. Results for 
the rolling regression for the value weighted dirty portfolio with a 24-month window are 
depicted in figure 4 and 5 and indicate a falling alpha and rising beta coefficient over time. 
Interestingly, the alpha value is approaching the CAPM predicted value of 0 over time, while 
beta is highlighting a clear upward trend. This is particularly true for the time after the Paris 
Agreement since beta estimates start to rise strongly in the years thereafter. Since 2017 the beta 
rose over the predicted value of 1 and the last regression window even yielded a beta over 1.5. 
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Figure 4 | Alpha Coefficient of the 24-month rolling regression for the value weighted dirty 
portfolio. The Y axis shows the value of the estimated alpha coefficient, while the X axis 

highlights the last date of the 24-month regression window. Authors’ own illustration. 

 

Figure 5 | Beta Coefficient of the 24-month rolling regression for the value weighted dirty 
portfolio. The Y axis illustrates the value of the estimated beta coefficient, while the X axis 

shows the last date of the 24-month regression window. The red vertical line indicates the date 

when the first rolling regression window incorporates the whole 24 month after the Paris 

Agreement of December 2015. Authors’ own illustration. 
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As highlighted in figure 6 and 7, the rolling regression results for the very dirty portfolio (value 
weighted), directly engaged in fossil fuel activities, show comparable dynamics to the dirty 
portfolio, however from different bases. The alpha highlights a downward trend over time, 
starting slightly over 0, and over time decreases below the expected value of 0 in the last rolling 
regressions. The beta of the value weighted very dirty portfolio shows an even stronger upward 
trend than the dirty portfolio. While the estimation of beta in the first rolling regression yields 
a value of 0.20, this estimate rises strongly over 1 and finishes at a very high value of 1.51 at 
the end of the time series. Again, the Paris Agreement seems to have marked the start of a very 
strong upward tendency of the beta estimates. Naturally the estimates vary more strongly for 
the very dirty portfolio, which is expectable, given the reduced number of constituents 
compared to the larger dirty portfolio. 
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Figure 6 | Alpha Coefficient of the 24-month rolling regression for the value weighted very 
dirty portfolio. The Y axis shows the value of the estimated alpha coefficient, while the X axis 

illustrates the last date of the 24-month regression window. Authors’ own illustration. 

 

Figure 7 | Beta Coefficient of the 24-month rolling regression for the value weighted very 
dirty portfolio. The Y axis illustrates the value of the estimated beta coefficient, while the X axis 

shows the last date of the 24-month regression window. The red vertical line indicates the date 

where the first rolling regression window incorporates the whole 24 month after the Paris 

Agreement of December 2015. Authors’ own illustration. 
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4.2.5 Chow Test for Structural Breaks and Reduced Time Frame Regression 
As presented before, the regression coefficients for the CAPM time series regression indicate 
strong tendencies over time, which are largely consistent throughout the two baseline portfolios. 
A Chow Test can detect whether the Paris Agreement induced a structural break to the dirty 
and very dirty portfolios. In other words, whether the Paris Agreement, as a major climate 
policy shift announcement, triggered a different risk awareness to companies facing high 
climate transition risk and whether this awareness led to significantly different systematic risk 
profiles as compared to before the agreement. Results for the Chow Test for both the dirty as 
well as the very dirty portfolio are roughly similar. For both portfolios there is a structural break 
after the Paris Agreement for the whole model. More precisely, the structural break is only 
detectable for the beta coefficient but not for the alpha/intercept of the model, thus providing 
evidence that the Paris agreement altered the systematic risk assessment of dirty portfolios. 

In order to strengthen this argument, this thesis also estimates a reduced time series CAPM 
model, solely for the timespan after the Paris agreement, since the Chow Test highlighted that 
the Paris agreement may mark the beginning of a `new era` in the risk assessment of stocks 
subject to high climate transition risk. Results are highlighted in table 8. The value weighted 
dirty portfolio indeed shows significantly different estimates compared to the baseline 
regression over the whole timespan. Most notably, the alpha estimate is now not significantly 
different from zero anymore, while the beta coefficient now is considerably larger than in the 
baseline estimate and the beta is even statistically significant over 1. 

Table 8 | CAPM regression results for value weighted dirty and very dirty portfolios after the 
Paris Agreement. The column headers show the portfolios and their weighting methodology. 

The rows highlight the regression results for the MSCI world index as the market factor and 

the constant. The last two rows show the number of observations as well as the estimated R 

squared. Robust standard errors are in parentheses. The significance levels are: *** p<0.01, 

** p<0.05, * p<0.1. Authors’ own calculation. 

 (18) (19) 
VARIABLES Value Weighted Dirty 

Portfolio after Paris 
Value Weighted Very Dirty 

Portfolio after Paris 
   
MSCI World 1.304*** 1.074*** 
 (0.137) (0.293) 
Constant/Alpha 0.00327 -0.00115 
 (0.00377) (0.00668) 
   
Observations 66 66 
R squared 0.792 0.460 

 

The value weighted very dirty portfolio on the other hand, does not indicate different coefficient 
significances as compared to the baseline estimate over the whole 11.5 year time span. While 
alpha decreases, it is not statistically different from zero, and while beta increases it is not 
significantly larger than 1. 

Taken together these reduced time series results strengthen the tendency, already observed in 
the rolling regressions. The sensitivity of (very) dirty portfolio returns to systematic risk (beta) 
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is rising strongly after the Paris Agreement and some portfolios are now reaching a point where 
the beta estimate is significantly larger than 1, indicating above average systematic risk.  

5. Discussion 
The following chapter will discuss the results in light of the research questions, integrate the 
findings in the introduced literature and outline limits of the approach taken. But first, the 
financial market pricing results are summarized in order to condense a bottom line. 

The overall message from the previous portfolio analysis is (despite some inconclusive results) 
that, over the 11.5-year observation period, the financial market does not price the climate 
transition risk exposure of companies which are highly exposed to CPRS. In order to simplify 
the regression results table 9 shows a summary of the most important regression results. While 
most portfolio estimates exhibit systematic risks in line with the market, some other portfolios 
are even priced as less risky than the market portfolio. This occurs in two out of three times in 
the Fama French 3-Factor Model. The estimation results for portfolios containing certain 
singular CPRS were opposed to the aggregated dirty portfolio since all estimates were in line 
with predictions from theory. Finally, the Fama French 3-Factor Model estimations also did not 
add as much explanatory power as expected and mostly replicated the single factor CAPM 
results. Furthermore, the additional factors were mostly insignificant. 

Table 9 | Summary of the main regression results for various dirty portfolios. For each 

depicted portfolio the estimated R squared is displayed. The alpha, HML and SMB coefficient 

estimates are marked as above or below zero if the estimates are significantly different on a 5% 

significance level. The beta coefficients are depicted as above or below 1 if they are statistically 

different on a 5% significance level. Authors’ own illustration. 

Portfolio Name  Alpha/Inter
cept 

Beta/Slope R squared HML 
Factor 

SMB 
Factor 

Dirty >0 1 .57 - - 
Dirty (equally) >0 <1 .32 - - 
Very Dirty 0 1 .31 - - 
Very Dirty 
(equally) 

0 1 .33  - - 

Energy 
Intensive 

0 1 .30 - - 

Buildings 0 1 .29 - - 
Transportation 0 1 .47 - - 
Dirty 3-Factor >0 1 .61 >0 >0 
Dirty 3-Factor 
(equally) 

>0 <1 .36 >0 0 

Very Dirty 3-
Factor 

0 <1 .39 0 0 

Very Dirty 3-
Factor (equally) 

0 1 .34 0 0 

Dirty (after 
Paris) 

0 >1 .79 - - 

Very Dirty 
(after Paris) 

0 1 .46 - - 
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However, this message changes once the trends in coefficient estimates are regarded over time. 
Despite some variations, it can be said that the overall systematic risk of both baseline portfolios 
is rising strongly over time. This is especially true after the Paris Agreement of December 2015, 
which posed a structural break to the time series for both the very dirty and dirty portfolio. The 
shorter regressions for the time after the Paris Agreement also highlights higher betas compared 
to the market average, although this is only significant for the dirty portfolio. The alphas in 
these restricted regressions also return to the expected value of 0. 

Coming back to the five hypotheses formulated in chapter 4, it can be said that hypotheses 1 to 
3 could not be substantiated while hypotheses 4 and 5 found support in the rolling regressions 
results. On the one hand, both the dirty and very dirty portfolios exhibit betas in line or below 
the market value of 1 for the whole 11.5-year time frame. No portfolio composition, no 
weighting technique or market factor could produce betas significantly above 1. This strongly 
indicates that over the whole time frame, the climate transition risk exposure of companies does 
not play a pivotal role in the pricing of firms on financial markets. This claim is also supported 
by the rejection of hypothesis 3 since very dirty companies show no significantly higher beta 
compared to dirty portfolios. 

Rejected: 

▪ Hypothesis 1: Very dirty firms exhibit a higher beta than the market average. 

▪ Hypothesis 2: Dirty firms exhibit a higher beta than the market average. 

▪ Hypothesis 3: Very dirty firms exhibit a higher beta than dirty firms. 

On the other hand, both hypothesis 4 and 5 could be substantiated by the results from the rolling 
regressions, the Chow Test as well as the reduced CAPM regressions after the Paris Agreement. 
Generally, the betas in both portfolios are rising strongly, especially after the Paris Agreement, 
but the beta for the very dirty portfolio is rising even faster than the beta of the dirty portfolio. 

Substantiated: 

▪ Hypothesis 4: Very dirty firms exhibit a strongly rising beta value over time. 

▪ Hypothesis 5: Dirty firms exhibit a rising beta value over time. 

5.1 The Climate Transition Risk Exposure of Holding Companies and its Implication 
on Financial Market Pricing 

The first research question can be answered by observing the revenue exposure of global 
holdings to CPRS 1-6. While the direct revenue exposure to CPRS 1-6 with 7.5% is on average 
small, it is sizable, and for more than 120 companies, which were the focus of this work, the 
directly climate policy relevant activities are dominant. Thus, even if the financial system as a 
whole might withstand distortions from a disorderly low carbon transition, some highly exposed 
firms face significantly higher climate transition risk, which must be adequately managed 
(Battiston et al., 2020).   

The novel subsidiary-methodology, developed in this thesis, unfolds the business structures of 
these complex global holdings, and shows in a detailed manner the percentage exposure to each 
of the nine CPRS. Looking at the overall revenues of all companies in the dataset, most revenues 
are earned in Finance, which does not automatically imply that these companies are not climate 
policy relevant. Their direct business effects are just not highly exposed to climate transition 



32 

 

risk. However, these financial companies could be very well, indirectly exposed to significant 
climate risks, e.g., through their loans. The analysis of such indirect climate risk was done by 
others (e.g.: Battiston et al., 2020; Battiston et al., 2019; Battiston et al., 2017) and is beyond 
the scope of this work. The most important CPRS in terms of direct revenue exposure to climate 
transition risk are Transportation, Energy Intensive and Buildings. While these CPRS carry 
climate transition risk through their current use of GHG intensive energy carriers, they could 
theoretically diversify away from fossil fuels more easily than CPRS 1 – Fossil Fuel. Thus, 
CPRS 1 – Fossil Fuel clearly carries more transition risk within the context of a disorderly low 
carbon transition (Battiston et al., 2020). However, the exposure of global holdings to the Fossil 
Fuel CPRS is, on average, low. Only 0.6% of overall revenues are earned in CPRS 1 and only 
roughly 1% of all firms are predominantly engaged in this sector. 

Since this work focusses on revenues, not on assets, and uses a different dataset, it is not 
straightforward to directly compare the average exposure to CPRS for global holdings with 
CPRS exposures found in other work outlined in the literature review. It can be, however, said 
in general, that the estimated direct exposure to CPRS is lower. Battiston et al. (2020) for 
example estimate the exposure of Austrian banks to CPRS 1-6 at 26% of all assets. The climate 
stress test by Battiston et al. (2017) yielded exposures of roughly 45% for Insurance and Pension 
Fonds and 48% for Governments. Similar to the results of this thesis for global holdings, CPRS 
3 - Energy Intensive played an important role. 

The value in the first step results is a better disclosure of direct climate transition risk exposure 
for holding companies which, if classified as `Finance` companies, would fall under the radar 
of investors trying to assess climate transition risk exposure of their portfolios. “Investors take 
decisions based on what they can measure” (Monasterolo & De Angelis, 2020, p. 3), thus better 
disclosure and information on climate financial risks can aid investors in rebalancing portfolios 
away from companies with significant climate risks, or to ask for higher compensation, which 
increases the borrowing costs of high-risk companies. Both financial market mechanisms can 
foster the low-carbon transition (Battiston et al., 2021b). 

Building on the results for research question 1, the second research question can be answered 
by comparing the pricing of several dirty portfolios and its evolution over time. The overall 
results have been introduced in the previous section, but are they in line with an efficient 
financial market? An efficient financial market values all security prices, at every time, utilizing 
every information available (Malkiel & Fama, 1970). Since knowledge about the climate crisis, 
its causes and implications is widely known and available (Stern, 2015), one would expect that 
climate transition risk is fully factored into market participants expectations and thereby priced 
correctly into financial markets. An efficient financial market thus prices the climate risk into 
securities and securities with a higher risk-return profile would be priced with a higher beta 
value than the market average. The following discussion will focus on the beta factor and only 
mention results for Jensen’s alpha briefly as the beta contains both the mean and the variance 
of the regression, making it the best tool to compare results for different portfolios.  

The results for the alpha estimates for the various portfolios are mostly in line with the expected 
value of 0, thus no risk adjusted overperformance compared to the market factor. However, 
both the equally and value weighted dirty portfolio exhibit abnormal return over the market on 
a risk adjusted basis. This extra return usually indicates model misspecification as consistent 
outperformance of portfolios against the market is extremely rare (Malkiel & Fama, 1970). But 
even after adding more explanatory factors in the Fama French 3-Factor Model, the estimated 
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alpha remains significantly above 0. This result could potentially indicate, in line with Alessi 
et al. (2021), that investors demand a risk premium for dirty stocks which are more exposed to 
climate transition risk. In other words: investors are only willing to invest in riskier dirty stocks 
if they are compensated with above normal returns. However, the very dirty portfolio performs 
in line with the market, which runs counter to this argumentation, as the very dirty portfolio 
should exhibit an even stronger outperformance compared to the dirty portfolio. Thus, the 
results in terms of alpha are overall inconclusive. Another explanation for the outperformance 
of the dirty portfolio could be located in the nature of the dataset containing many small 
companies with incomplete stock market notation, which needed to be interpolated. Thus, 
measurement errors could cause a bias in the CAPM estimation of Jensen’s alpha. This 
hypothesis is substantiated by the trends of alpha over time, which are falling towards the 
expected value of zero for both baseline portfolios. Stock market data availability was more 
complete for more recent years compared to the start of the time series, thus the measurement 
error might have disappeared in the second half of the time window, when alpha estimates were 
close to zero for both the dirty- and very dirty portfolio. 

Comparing the results for beta against theory as well as against the five hypotheses one can 
assess that, over the 11.5 year period, climate transition risk was not priced by financial markets 
as the baseline (very) dirty portfolios were priced in line with the market. The equally weighted 
dirty portfolio even indicates a risk return profile, which is less risky than the market average. 
These findings also led to a rejection of hypotheses 1-3. Does this imply that financial markets 
are blind to the carbon risk in companies? Not necessarily, because in 2010, the beginning of 
the time series, the climate crisis was not at today’s critical emergency point and climate 
transition risk not as central in investors’ discussion. Thus, the findings over the 11.5-year 
period are not necessarily surprising and in line with much work outlined in the literature review 
which overall did not find that climate transition risks were significantly priced by financial 
markets (Karpf & Mandel, 2018; Monasterolo & De Angelis, 2020; Mukanjari & Sterner, 
2018). It is thus important to observe the trends in beta over time, and the direction of the overall 
trend in both baseline portfolios is, in line with hypotheses 4 and 5, univocally rising. The beta 
estimates for the very dirty and dirty portfolio for the time after the Paris Agreement are above 
1 and well above the estimates for the time prior to December 2015. This is well in line with 
what is expected from efficient markets, rising betas as the awareness for climate risks as well 
as the observable impacts from climate change are more and more obvious (Stern, 2015) and 
increasingly start to influence investors’ expectations. In this regard, the Paris Agreement, 
which showed the ambition of all countries to phase out fossil fuels and fund renewable 
energies (UNFCCC, 2016), could be an inflection point in the pricing of financial markets as a 
structural break in the time series was detected for this moment in time. However, as highlighted 
in the introduction, in the years 2015-2020 many other initiatives such as the Network for 
Greening the Financial System or the Task Force on Climate-related Financial Disclosures were 
formed, which in theory all could have led to a higher climate transition risk awareness on 
financial markets (FSB, 2020; NGFS, 2019). 

Despite these signs of a change in the pricing paradigm of financial markets, it must be said 
that financial markets still underestimate the scope of the climate crisis and its implications on 
the business models of dirty companies. If humankind wants to have a chance in limiting the 
impacts from global climate change, companies in CPRS 1 – Fossil Fuel do not have a business 
model in 10 to 15 years (IPCC, 2021; Carbon Tracker Init, 2017) and are exposed to the 
significant risk of being left with gigantic stranded assets and large amounts of debt (Carbon 
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Tracker Init, 2017). The severity of this outlook is not reflected in the beta estimates, which 
only recently rose above 1 for both baseline portfolios. For the very dirty portfolio, the portfolio 
most at direct risk within a disorderly transition, the beta estimate is not even significantly 
higher than 1 after the Paris Agreement, implying comparable risk metrics to the market 
average. 

There are different potential explanation why financial markets understate the risk of companies 
most exposed to climate transition risk. The most straightforward one relates to the special 
nature of climate related risks as a novel class of risk, which does not offer past data to base 
predictions on. Climate related risk is characterized by deep uncertainty, nonlinearity, 
endogenous perceptions, and long-term stock flow dynamics, which is radically different from 
common financial risks and thus poses huge problems for traditional risk assessment 
methodologies (Battiston et al., 2019; Monasterolo, 2020). The relative neglect of the scope 
and severity of climate transition risks could then be explained by the short, termed nature of 
the financial market which values firms based on expectations for the next quarters while risk 
induced by climate change is a very uncertain, nonlinear, and generational issue. Markets are 
thus ill equipped to price the novel climate transition risk into financial contracts and new risk 
assessment methodologies, which inform investors about their portfolio risk exposure are direly 
needed (Battiston et al., 2021a).  

For financial market models the finding of a rising awareness for climate transition risks might 
have interesting consequences because traditional pricing models, such as the CAPM, the 3- or 
even the 5-factor model might soon not be sufficient to explain stock market variation for high 
climate transition risk companies. The introduction of an additional `dirty factor` for pricing 
models, accounting for the rising awareness of investors for climate transition risks, might 
promise relief. Such a `dirty factor` could be based on CPRS exposure of firms over time. 
Thereby firms would be differentiated by their climate transition risk exposure and analysts 
could easily observe whether this factor has a significant impact on portfolio performances. 
Since CPRS do not only cover activities at risk within a disorderly transition (Battiston et al., 
2020), the risk factor could also encompass the potential benefit of a low carbon transition on 
the business of clean firms. 

The aforementioned results of strongly rising betas for both baseline portfolios are clearly 
relevant for investors because, if the illustrated trends continue, investors highly exposed to 
CPRS might see the systematic risk levels of their portfolios rise above desired levels. A 
rebalancing into low carbon investments might decrease systematic risk levels again. The 
positive effect of adding clean indices to investor portfolios was shown in other work 
(Monasterolo & De Angelis, 2020).  

The findings of this thesis are also relevant from a policy perspective. The results highlight a 
problematic under awareness of financial markets with respect to climate related risks, 
especially in the years before the Paris Agreement. Policy makers can regard this as evidence 
that their climate transition announcements are not fully anticipated by market participants and 
thus might not be credible enough. However, there are positive signs in the last five years and 
the adoption of the Paris Agreement might have triggered a structural break in the awareness 
of investors for climate transition risk. Apparently, the Paris Agreement, to some degree, poses 
a credible threat to the business model of companies exposed to high degrees of climate 
transition risk. 
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5.2 Limits 
Despite the relevant findings, some important shortcomings limit the results and lay the ground 
for further work on the subject. First, the CPRS classification for such a large number of 
companies with an even larger number of subsidiaries, of which many are not public, was only 
possible through some justified but strong assumptions. The strongest assumption being that all 
parent company revenues can be explained by the sum of subsidiary revenues. Another 
necessary assumption concerned private subsidiaries without publicly available information, 
which made necessary the outlined 3 case methodology which will only yield roughly correct 
estimates. Another weakness of the classification is the assumption that CPRS exposure of 
companies is assumed to be static over time, since only the most recent revenue data was 
utilized. Taken together these assumptions might bias the results in a particular direction and 
might well explain some unexpected findings such as the high alpha or low beta value for some 
dirty portfolios in the first 5 years of the time series. 

Second, this thesis only utilizes revenue information in order to estimate the climate transition 
risk exposure, which is somewhat backward looking, as revenues were already earned when 
they are reported. Financial markets and rational market participants however look into the 
future to price firms (Van der Ploeg & Rezai, 2020a). 

Third, the chosen dataset of global holding companies did not contain a sufficient number of 
companies profiting within a climate transition and thus it was not possible to create clean 
portfolios, which could have been compared against the pricing of dirty portfolios. It was also 
only possible to create portfolios based on the more aggregated CPRS-Main classification. 
Datasets with more companies in CPRS 1-6 could be utilized for a more granular CPRS analysis 
as well. 

Finally, the overall data availability in both steps of the analysis was not complete. Especially 
for the smaller companies, data on subsidiaries, dividends, market capitalizations or stock 
market returns was incomplete, and interpolations needed to fill some data gaps. This adds some 
uncertainty to the results. 

6. Conclusion 
This thesis aimed at answering two questions.  

▪ How are global holding companies exposed to climate transition risk?  

▪ How is climate transition risk exposure priced by financial markets? 

The novel methodology on assessing the climate transition risk exposure of global holdings 
revealed that, in terms of CPRS, most holdings are not directly subject to large climate transition 
risk. However, roughly 12% of holding companies face disproportional climate risks, which 
might unfold in the case of a disorderly low carbon transition, as most revenue is earned through 
business in highly climate relevant sectors.  

With the detailed disclosure of climate transition risks for holding companies, their pricing can 
be compared against various market portfolios. Results indicate that financial markets still 
belittle the huge climate related risks for very climate policy relevant firms albeit with changing 
tendencies. The Paris Agreement seems to mark a starting point for a tentative reorientation of 
financial market pricing as the systematic risk measures for the dirty and very dirty portfolio 
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rose significantly after the agreement. This also highlights the importance to utilize the most 
recent data in order to follow recent developments on financial markets. 

These findings are relevant due to multiple reasons. They contribute to better disclosure of 
climate related risks through the detailed CPRS exposure classification of global holding 
companies with the most recent data. This is particularly important as no CPRS classification 
was ever conducted for this range of NACE codes. Better disclosure aids investors in 
rebalancing portfolios and pricing risks correctly. Thereby correct disclosure of climate 
transition risk might help enable the transition to a low carbon future. Better disclosure is also 
pivotal for central banks and financial supervisors in order to perform climate stress tests with 
the best available data (Battiston et al., 2020). Findings gained in answering the second research 
question aid research on Climate Finance through a novel combination of the CPRS 
methodology with traditional market pricing models. Results are also clearly relevant for 
governments in assessing how credible their climate policy announcements are. The tentative 
evidence of higher climate risk awareness of financial markets indicates that announcements of 
politicians to phase out fossil fuel in order to become net neutral by 2050 (e.g., in the United 
Kingdom: Treasury, 2021) are gaining credibility. However, higher carbon prices and a credible 
commitment for steadily rising carbon prices all the way until 2050 are necessary in order to 
indicate to financial market participants unequivocally, that the era of fossil fuels is over 
(Schulmeister, 2020). 

There are some interesting avenues for future research, which are directly emerging from the 
aforementioned limits of the chosen methodology. In order to make the CPRS classification 
more forward-looking one could classify firms Capital Expenditures into CPRS as they lay the 
ground for future business activities. Another idea would be to change the CPRS classification 
away from a static approach towards a dynamic CPRS categorization, which would also imply 
a regular re-composition of portfolios. A logical advancement of this thesis is the construction 
of clean portfolios. It will be interesting to compare pricing of clean and dirty portfolios, and 
their evolution over time. A very promising way to construct such portfolios is the comparison 
of granular CPRS portfolios based on the utilized energy technology within one CPRS-Main 
group. With a different dataset containing more CPRS 1-6 companies, it would be for example 
possible to compare two different portfolios within CPRS 5 – Transportation. One could be 
dirty, e.g., Transportation – Air, while the other one could be clean, containing for example 
Transportation – Bicycle or Railway. Finally, a very interesting idea for future research is the 
introduction of a dynamic dirty risk factor to the Fama French Factor Models in order to account 
for climate transition risk as a novel risk factor, which will increasingly influence stock market 
returns of firms. Such a dynamic dirty risk factor could be approximated by the CPRS exposure 
of companies over time. 
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